EN CN

水资源管理与气候变化

中国金沙江流域:通往成功的路上

了解更多关于气候变化与社会经济发展对水资源的影响,以及如何采用适当的工具与产品制定适应性措施的全面规划,从而有助于地区长期持续发展。探讨在中国实施的中瑞合作金沙江流域项目。

工具与产品

项目背景

长江流域是中国的社会经济重地,金沙江位于长江的上游。在过去的二三十年里,金沙江流域经历了气候变暖以及日益增加的极端气候事件,如洪旱灾害等,对当地造成了重大经济损失。同时,工业、居民区、水电、农业、生态系统和旅游等不同行业和利益相关者对水资源与气候变化非常敏感。

中瑞合作项目

瑞士和中国合作开展的金沙江项目,旨在为提高金沙江流域水资源管理能力、成功应对气候变化与经济社会发展奠定坚实的基础。丽江位于云南省西北部,是金沙江项目的试点地区,现已对其当前的水资源状况及趋势进行了分析。瑞士和中国已在水资源管理和气候变化领域合作了十多年。两国在水资源方面都受到了气候变化的严重影响。

请使用地图来了解金沙江流域!

  • 长江流域-概况
  • 项目面积

金沙江

金沙江的源头位于青藏高原,主要穿过中国西南地区的青海省、云南省和四川省。金沙江的流域面积占长江流域面积的26%。

长江

长江是中国第一长河,也是世界第三大河,河长超过6000km。长江流域面积达170万km² ,流经大约五分之一的中国领土。

金沙江流域

冰川融雪径流和气候变化对金沙江流域的水文状况影响很大。近年来,极端气候事件如洪涝灾害频发。气候变化对水资源和生物多样性有较大影响。

丽江

丽江市是本项目的试点地区,在过去的二三十年里面临着日益严重的水资源危机:泉水与河道已开始干涸,河流生态日益恶化。同时,各行业需水也不断增长,尤其是农业和旅游业。

玉龙雪山

冰川是水循环的重要组成部分。 近年来玉龙雪山冰川严重退化, 因此,对其现状和变化趋势的观测十分必要。

目标

本项目的长期目标为,基于气候变化与社会经济发展,提高金沙江流域水资源的综合管理。从而有效地保护生命和财产,保障该地区的水资源安全,为中国经济的可持续发展以及探讨全球水资源与气候变化做出贡献。

项目第一阶段为三年,旨在为金沙江流域未来水资源综合框架奠定基础。因此,主要目标如下:

    • 充分提高对金沙江流域水文情势和水生态系统的认识;
    • 识别气候变化对水资源及极端气候事件的影响;
    • 制定水资源和极端事件(考虑水生态系统)适应性策略和措施;
    • 中瑞专家共同交流在水资源管理和气候变化适应性领域的知识和专业技术,并将其传播到国际社会。

行业与利益相关者

在金沙江流域,不同行业和利益相关者都受到气候变化与社会经济发展的影响。如今,所有行业和利益相关者都对水资源有很强的依赖。金沙江项目旨在让这些行业的水资源供给与需求在未来达到可持续的平衡。

生活

生活

金沙江流域及整个中国在都市化与人口增长方面都显现了强劲的趋势。日益增加的城市居民导致了更高的水资源需求与消耗。对水资源的供给与需求进行合理、可持续的管理,将能缓解紧张的局面及冲突。

更多

农业

农业

该地区主要以农业发展为主。烟草是云南省和四川省主要的出口产品。绝大多数的农村居民主要靠农业维持生计,受到旱涝的影响较大。考虑到传统灌溉需水量大,本项目将会一定程度考虑影响他们的生活需水等情况。

更多

水电

水电

本地区计划进行大量的水电站投资。沿着金沙江流域的干流及雅砻江,已经规划了42座梯级水电站,而且部分电站已经建成,这将会影响整个流域的水文情势。一些气候情景预测未来的水资源量可能会减少,因此水力发电产也会减少。本项目将有助于优化水电站调度规则,从而满足所有用水行业的需求。

更多

生态系统

生态系统

人类在很多方面都受益于生态系统。该地区的生态系统能保证重要的服务功能,如防洪、水净化、鱼类栖息地以及文娱功能。气温、降水变化在很大程度上影响生态系统,而后者会对人类造成负面影响。适当的水资源管理可以起到预防作用。

更多

工业

工业

该地区主要的制造业为重工业,如煤炭、铁矿、钢和铜生产。这些工业发展迅速,它们的生产工作在很大程度上依赖于水资源。适当的水资源管理则能保证这些用户的用水,且能管控水污染风险,这对其他用水户来说至关重要。

更多

旅游业

旅游业

在金沙江流域,旅游业是一个持续发展的行业,特别是在丽江地区。丽江的古镇已被联合国教科文组织认定为世界文化遗产。未来旅游业将有较高的用水需求。本项目旨在使该地区的水资源供给与需求达到可持续的平衡。

更多

工具与产品

为了改善水资源综合管理,我们增进了对金沙江流域现状水资源特征、极端气候事件和水生态系统的充分了解。以现状为基准年,识别气候变化和社会经济发展对水资源及极端水文事件的影响。从而制定了适应策略和措施。探索我们的工具和产品!

了解更多关于水资源特征、极端气候事件和水生态系统的信息

了解更多关于水资源特征、极端气候事件和水生态系统的信息

了解更多

预测径流,预防洪灾:预测模型

预测径流,预防洪灾:预测模型

了解更多

水资源供给与需求:评估与规划工具

水资源供给与需求:评估与规划工具

了解更多

提高冰川融雪监测能力

提高冰川融雪监测能力

了解更多

气候变化对水资源供给和极端气候事件的影响

气候变化对水资源供给和极端气候事件的影响

了解更多

未来的适应策略和措施

未来的适应策略和措施

了解更多

项目主要结论

  • 金沙江流域
  • 金沙江流域中下游
  • 丽江市

气象水文数据分析

项目开发了气象水文数据分析软件,该软件可以深入分析气温和降水观测值的历史变化趋势,分析结果表明温度增加趋势明显。

极端水文事件

项目开发了一个灾害事件登记平台,该平台可以记录,可视化和分析异构灾害事件数据。主要的灾害信息如受灾人员、受灾面积和经济损失等都可登记。

遥感监测

基于遥感监测数据,项目组对金沙江流域上游的积雪覆盖和融雪径流过程进行模拟分析。

未来径流预测和防洪

项目组基于金沙江水系 50 多个站点的实测数据构建了水文预报模型,该模型可用于支持防洪决策制定,从而提高洪水预警和水库调度水平。

温度和降水预测

对于金沙江下游地区,近期和远期气温预测分别增加约 1 – 2° C和 1.5 – 5° C。多数气候情景预测上游和中游地区的降雨未来呈现增加趋势,下游地区降雨变化存在一定不确定性。

气候变化情景生成

为了模拟未来气候变化,确定了8 套近期气候情景 (2021 – 2050)和16 套远期 (2070 – 2099)的逐日气温和降水数据。

图例 水文特征和水文过程 气候变化情景和影响分析 适应性对策措施

气候变化影响分析

基于气候情景数据,项目组分析气候变化对水力发电、农业、洪旱事件以及水生态系统的影响。

气候变化对冷水鱼的影响

气候变化引起的水温升高是影响冷水鱼栖息地的重要因素之一,然而,由于水库大坝的修建将鱼类在不同生长期迁徙至适宜栖息地的路径阻断,水电站的运行对鱼类生境的影响较气候变化影响更大。

农业种植区的迁移

随着降雨量和温度的增加,作物种植适宜区面积预期会增加,向北和高海拔地区迁移。然而,作物的需水量也会增加。

水力发电:径流增加

年均径流和丰水期径流预期会增加,但受限于发电装机容量,水力发电量并不会按比例 增加。

典型案例:极端水文事件

本项目制定了应对洪水、农业和洪旱事件的示范措施,以及选定地区的农业和水文干旱事件,并分析了受影响部门和利益相关方面临的挑战。

图例 水文特征和水文过程 气候变化情景和影响分析 适应性对策措施

未来径流预测和防洪

项目组基于金沙江水系 50 多个站点的实测数据构建了水文预报模型,该模型可用于支持防洪决策制定,从而提高洪水预警和水库调度水平。

地面冰川监测站

监测站可以提供分析气候变化对冰川融化和径流的影响的基本数据。通过实时监测,首次实现玉龙雪山冰川变化的可视化。

丽江水危机

丽江的水危机日益严峻,枯水时段表现尤为严重。农业灌溉需水未来预计增加 3% 到 7% 。由于未来城市化进程和旅游业的快速发展,未来城镇需水预计增加一倍。

典型案例:丽江市供需水

项目构建的水资源评估与规划模型,可以再现丽江市现状和未来供需水状况。通过评估 52 项适应性措施来缓解丽江水危机,这项成果将用于当地水管理部门的规划制定过程。

图例 水文特征和水文过程 气候变化情景和影响分析 适应性对策措施

会议与出版物

你想知道更多关于金沙江流域项目的信息吗?请查看该项目的会议介绍或阅读我们的出版物:

会议

  • InterPraevent国际会议
    2016年6月于瑞士卢塞恩举行
  • 第七届中瑞水管理高层对话
    2016年8月于中国北京举行
  • 金沙江项目中期会议
    2016年11月于中国丽江举行
  • 第九届全球水资源与环境会议
    2017年1月于中国武汉举行

出版物

项目合作伙伴

金沙江流域项目是由中国和瑞士合作开展,涉及两国的公共和私营部门。

中瑞项目指导委员会
中国合作伙伴
瑞士合作伙伴

联系方式

版本说明

概念、内容&网页设计
EBP Schweiz AG
Cornelia Büttner + Monika Rohner
Zollikerstrasse 65
CH-8702 Zollikon
kommunikation@ebp.ch
www.ebp-kommunikation.ch

技术实施
Odoson
Robert Baumgartner
Carrer d’Ali Bei 7, 2-2
ES-08010 Barcelona
hello@odoson.com
www.odoson.com

版权
© 2017 EBP

制责任限
本公司已采取一切合理的努力,确保网站的内容在编制时是正确的。然而,EBP Schweiz AG并不能保证第三方信息的准确性。其他网站的链接不在EBP Schweiz AG的控制之内。

Know more about Water Characteristics, Extreme Events and Aquatic Ecosystems

As a fundamental basis for integrated water management, knowledge about water characteristics, water-related natural extreme events and aquatic ecosystem in the Jinsha River Basin is crucial. We improved this knowledge substantially.

Better knowledge of hydro-meteorological characteristics

We collected and analyzed the hydro-meteorological data for the region from the last 50 years in order to gain a better understanding of the water characteristics under different climate conditions in the past. In particular, we compiled and analyzed daily meteorological data (precipitation, minimum, average and maximum temperature) of 45 stations (31 of which were within the basin) and data from 5 hydrological stations (daily discharges).

The legendary first bend of Yangtze River near Shigu in Yunnan Province.

An important aspect of this work has been the elaboration of the HydroAnalysis package, a structured R-tool developed specifically for the project to apply different data analyses: basic statistics calculation, frequency, trends and drought analyses.

In general, we identified no significal trends in the duration, magnitude or intensity of short, medium and long term drought events. However, a certain increasing trend in the number of rainy days per year has been detected in the upper part of the Jinsha River Basin, and a reducing trend in stations in the lower part.

The results of this research helped to make a plausibility check on the climate change projections and the respective trends on the climate variables.

Overview of historical extreme events

Water-related natural extreme events can strongly influence water resource management. The occurrence, magnitude and consequences of such events should be analyzed and understood in order to create a foundation for a thorough planning of adaptation measures and the long-term development of the region. For this, we developed a web-based natural hazard event registration platform for the Jinsha River Region. It can be used for both event data registration or browsing registered events. Collected data and information for about 60 events of different natural disaster types (floods, droughts, debris flows and landslides) have so far been registered in this platform, including information sources, affected areas, duration, spatial and temporal distribution, damage and financial loss.

We have set up a database for extreme events to record severe floodings like the ones in China in July 2016

Check out the results of the study: Factsheet Understanding the Characteristics of Historical Extreme Events

Analysis of aquatic ecosystems

In recent years, the aquatic ecosystem of the Jinsha River has experienced significant changes due to the construction of hydropower stations. Furthermore, coldwater fish species which are widely distributed in the Jinsha River will be increasingly under pressure due to climate change. Therefore, research has been carried out with a special focus on the fish communities and habitats. The results provide detailed information on the diversity of aquatic organisms, current ecosystem health levels and the vulnerability of the aquatic ecosystem, indicating needs for ecosystem protection and restoration.

The current condition of the aquatic ecosystem in the Jinsha River has been analyzed in order to provide information about the phytoplankton, zooplankton, zoobenthos and – with a special focus – the fish. The quality of fish habitats in different river sections was assessed by using a Fish Index of Biological Integrity (IBI).

The results show that today’s aquatic ecosystems in the area manifest high biodiversity. However, coldwater fish species are very sensitive to climate change and impacts of hydropower. Thus, sustainable adaptation and protection measures in the Jinsha River Basin need to be implemented.

In the Jinsha River Basin, coldwater fish species are very sensitive to climate change and the impacts of hydropower.

Check out the results of the study: Factsheet Overview of Aquatic Ecosystem in Jinsha River

Predict Runoff, Prevent Flooding: A Forecasting Model

In the past and future decades, numerous hydropower reservoirs have been and will be built in the Jinsha River Basin. As part of the analysis of the water characteristics of the region, we elaborated a hydro-meteorological forecasting model in which the large reservoirs are integrated.

With respect to the runoff prediction and flood prevention requirements, we established a hydro-meteorological forecasting model. The model has been incorporated into the existing forecasting system of the Changjiang Water Resources Commission (CWRC). The results can provide data reference and a decision-making basis for CWRC to command flood prevention, and hence enhance the commission’s capability in terms of runoff prediction and flood prevention management.

We included data from almost 400 rainfall gauging stations, over 70 discharge gauging stations and a dozen large reservoirs in the model. Real-time transfer of weather forecasting data from the Weather Research and Forecasting Model and the Bureau of Hydrology at CWRC to the database has been programmed. The Routing System model is used for the entire Jinsha River, covering more than fifty forecasting points.

Runoff forecasts in different regions of the Jinsha River Basin are therefore possible, and operation of the reservoirs included can be optimized. Results from model runs will also be used to estimate impacts of climate change on the future water resource and hydropower production in the region.

Hydro-meteorological gauging station at Er Lake near Dali, as part of the forecasting system.

Check out the results of the study: Factsheet Hydro-meteorological Forecasting Model

Water Supply and Demand: An Evaluation and Planning Tool

Lijiang municipality is a fast-developing region in the Jinsha River Basin. A case study has addressed the challenges of water resources management in each town of Lijiang. Based on a water allocation model, the analysis and results give a detailed picture of the current and future water supply and demand situation of Lijiang, and indicate the needs for integrated water management measures.

The water allocation model reproduces the water supply and consumption status in Lijiang. This provides a fundamental basis for the future water resources planning for Lijiang.

In the model, we included more than sixty water supply infrastructures such as rivers, lakes, reservoirs, and about 270 water demand sites including agriculture, industry and drinking water.

With help of the model, future socio-economic and demographic trends can be assessed. Thus, a solid basis is given to the local authorities for sustainable decision-making regarding water resources management in the future.

The model could be duplicated to be used for other regions or cities in China.

A sequence of the water supply channel and irrigation system in Lijiang. Our work and studies will help to improve the water management system.

Check out the results of the study: Factsheet Water Resources Management in Lijiang

Glacier and Snow Melt Monitoring Capability Improved

Glaciers and seasonal snow cover in the Jinsha River Basin are important components of the water cycle. Therefore, the investigation of their current situation and changes is of high relevance.

Terrestrial glacier monitoring and satellite-based snow cover monitoring will improve the understanding of the status and dynamics of different factors such as snow melt, glacier melt, droughts, floods, and their impacts on the water resources in the region.

To increase climate change detection capability, we designed enhanced monitoring equipment for Yulong Snow Mountain. By using this equipment, the glacier monitoring capability will be significantly improved. Operation of the automatic glacier monitoring station can greatly reduce the manual measurement workload and improve monitoring efficiency.

Furthermore, we created a Snowmelt Runoff Model to analyze changes in snow cover of different altitudinal zones.

The two monitoring systems are important tools for the research team to record changes in glacier and snow melt, and to deliver true evidence for the public to understand climate change.

We designed and installed enhanced glacier monitoring equipment for Yulong Snow Mountain, to increase detection capability of climate change.

Check out the results of the study: Factsheet Snow and Glacier Monitoring System

Impacts of Climate Change

What are the impacts of climate change on water supply, extreme events and aquatic ecosystems in the Jinsha River Basin? We analyzed these impacts based on climate change scenarios for temperature and precipitation. Water characteristics which we elaborated earlier served as a baseline.

Climate change scenarios

Scenarios describing expected climate change in the Jinsha River Basin are of critical importance to understand how climate change affects the sustainable use of water resources and extreme events such as floods and droughts. Based on the predictions of multiple general circulation models (GCM) we elaborated a set of 24 climate change scenarios for daily temperature and precipitation on a grid covering the entire Jinsha River Basin. 8 scenarios cover the near future (2021-2050) and 16 scenarios cover the far future (2070-2099). The use of several climate scenarios forms the basis for a subsequent uncertainty analysis regarding the impacts of climate change.

For the downstream part of Jinsha River Basin, a temperature rise of 1 – 2°C in the near future and 1.5 – 5°C in the far future is expected (compared to the 1981 – 2010 baseline). Whereas the trend towards higher temperatures is unambiguous, the trend in average precipitation is more uncertain. Most climate change scenarios show an increase in precipitation for the upstream and middle part of the Jinsha River Basin, whereas the change for the downstream part of the region is uncertain. This corresponds to current trends, which underlines the plausibility of the climate change forecasts.

Check out the results of the study: Factsheet Climate Change Scenarios

Impacts on different sectors and stakeholders

For the entire Jinsha River Basin, we analyzed impacts of each climate change scenario on sectors like hydropower (e.g. electricity production), agriculture (e.g. crop suitability) and aquatic ecosystems (e.g. fish habitat quality). The impact assessment included extreme events (e.g. flood frequency, flood intensity, flash floods, agricultural and hydrological drought). Additionally, we have studied the impacts on industry, residential areas/tourism and agriculture for the Lijiang area, by analyzing water balance, identifying water deficits and considering future socio-economic trends.

Opportunities and challenges due to climate change have been identified and form the basis for adaptation strategies and measures.

Lijiang has experienced increasing water crises in the last 2-3 decades. River courses and ponds such as Black Dragon Pond have started to dry up.

Impacts on water supply and demand in Lijiang City

The impact on water supply and demand in Lijiang City we evaluated using a water allocation model. The results show that the future demand for agricultural irrigation water is expected to increase by 3% (near future) to 7% (far future); due to urbanization and an increase in tourism, domestic water demand is expected to double. The assessment shows that Lijiang is already suffering from water scarcity today. And the water supply and demand situation will become more critical in the future, especially during the dry season.

Impacts on extreme events

We analysed the frequency and intensity of different types of extreme events such as flood and drought in the Jinsha River Basin under 24 different climate scenarios. The results indicate that for mainstream river floods of a given occurrence rate, flood intensity is expected to increase significantly. These results should draw attention to further review the design of flood capacity measures and the management of events, where given thresholds (e.g. warning levels) are exceeded.

Residential areas, agriculture, industry, critical infrastructure, energy production, waterways and ecosystems are mainly affected by extreme events influenced by climate change. Impacts consist mainly of financial losses, but also of fatalities due to flash floods.

Due to the rising number of days with intense rain, flash floods in tributary areas are expected to occur more frequently in the future, creating more damage.

During the dry season, increasing evaporation due to higher temperature dominates possible changes in precipitation patterns. Therefore, the frequency of hydrological drought events will increase. Regarding agricultural drought, there can be a significant increase in crop water demand due to rising evapotranspiration, which could, if irrigation water is scarce, lead to a higher frequency, intensity and duration of agricultural drought events.

Impacts on aquatic ecosystems

The water temperature rise is the most important factor affecting cold-water fish habitat by shortening their spawning period. The interactions among different species will induce variations into the fish community structure and eventually result in many ecological responses such as alterations in species distributions, reduced biodiversity, invasion of alien species and food web structure.

Furthermore, the combined effects of hydropower stations such as impoundment, alteration of hydrological regimes, blocking effect and hypolimnetic discharges will accelerate the ecosystem’s degradation. The restoration of longitudinal connectivity should be a high priority of rehabilitation works in these systems to make essential spawning habitat accessible.

Impacts on hydropower

Average annual runoff as well as runoff during the wet season are expected to increase significantly. However, due to limited turbine capacity, hydropower production will not increase proportionally.

Impacts on agriculture

With the increase of yearly precipitation and temperature in the Jinsha River Basin, the area suitable for the cultivation of important crops may raise, shifting further north and to higher altitudes. However, the water demand of crops is expected to increase.

Adaptation Strategies and Measures for the Future

Based on our analysis of impacts of climate change and socio-economic development on water supply and extreme events in Jinsha River Basin, we created ideas of adaptation measures to water resources management, flood control and drought relief in case studies. Additionally, we outlined principles for a long-term climate change adaptation strategy.

Case Study: Water Supply and Demand

In this project we developed a Water Evaluation and Planning Model that reproduces the current and future water supply and demand situation in Lijiang.  Our analysis showed that the city is already suffering from water scarcity today. The water supply and demand situation will become more critical in the future, especially during the dry season.

We evaluated 52 adaptation measures to reduce water scarcity in Lijiang. Our analysis of existing or already planned measures to reduce water scarcity in Lijiang City has shown that most of the planned measures are engineering measures on the water supply side. Non-engineering measures on the demand side and infrastructure management show a good performance that could be considered as additional adaptation options. We recommended a set of additional adaptation options such as reservoir management, water saving and water reuse, optimized crop selection and cultivation technologies.

Our Water Evaluation and Planning Model provides a useful basis for the Lijiang Water Bureau to properly and comprehensively deal with climate change and socio-economic developments. The project’s research findings partially contributed to the “Lijiang Ecological Water Network Construction Planning” and “Lijiang Water Conservancy Development 13th Five-Year Plan”.

Case Study: Extreme Events

In the case study of extreme events we elaborated exemplary measures to adapt to floods in Jinsha mainstream as well as to agricultural and hydrological drought events in Jinsha downstream area.

To protect Yibin City from a mainstream flood in the far future, about 80 percent of the storage capacity of the reservoirs Xiangjiaba and Xiluodu seems to be needed. Since part of the retention volume of the two reservoirs must be retained to protect other cities, adaptive reservoir management is required.

Regarding drought relief, it is expected that the impacts of climate change which influence hydrological droughts on the three analyzed projects (Panzhihua Urban Water Supply Project, Central Yunnan Diversion Project, Xiangjiaba Irrigation Area Project) will be mitigated by the planned cascade reservoirs in the middle and lower reaches of Jinsha River Basin mainstream.

In general, our analysis of existing measures to reduce flood and drought risks has shown – similar to the Lijiang case – that most of the planned measures are engineering measures for flood control and drought relief. Non-engineering measures received less attention. However, the evaluation of non-engineering measures such as monitoring systems, hazard and risk mapping etc. shows a good performance, so that such measures are recommended to be worked out in more detail and eventually implemented in addition to the already planned measures.

Long-term Climate Change Adaptation Strategy

Based on these case studies, we outlined principles for a long-term climate change adaptation strategy for Jinsha River Basin. Important elements of this strategy are overall objectives of the adaptation activities, the political and institutional framework, capacity building and sensitization as well as the concrete adaptation measures. The embedding in existing strategies and policies is an important aspect to be considered in the elaboration of the long-term adaptation strategy.

了解更多关于水资源特征、极端气候事件和水生态系统的信息

了解金沙江流域的水资源特征、与水资源相关的自然极端气候事件和水生态系统是至关重要的,这是进行水资源综合管理的基础。我们充分增进了对这方面的了解。

更好地了解水文气象特征

我们收集分析了该地区过去50年内的水文气象资料,通过整理分析了45个国家气象站(其中31个位于流域)的气象要素(降水,最高、最低和平均温度)以及5个水文站的流量资料(日均流量),可以更好地了解过去不同气候状况下的水资源特征。

传说的长江第一道弯,位于云南省石鼓镇附近。

这项工作的一个重要方面就是编制HydroAnalysis软件包,这是一个结构化的R-tool,专为该项目进行不同气象水文资料分析而研发:基本统计特征、频率、趋势和干旱分析。

总体而言,短期、中期和长期干旱事件的持续时间、强度大小没有明显的变化趋势。但是,我们发现位于金沙江流域上游一些站点的有雨日天数呈增加趋势,而位于下游流域的站点呈现减少趋势。这项研究结果有助于对气象要素的情景预测和相关趋势进行合理性分析。

历史极端气候事件概述

与水资源相关的自然极端气候事件会对水资源管理造成强烈影响。为了给该地区的适应性措施和长期发展规划奠定基础,必须分析、了解此类事件的发生、严重程度和后果。因此,我们在金沙江流域建立一个自然灾害事件登记的网络平台。该平台可以用来录入极端事件信息或浏览已录入的事件。目前为止,该平台已录入了大约60个不同的自然灾害事件(洪水、干旱、泥石流和山体滑坡)的资料和信息,包括信息源、受灾地区、持续时间、空间与时间分布、损害和经济损失。

我们已建立了一个极端气候事件数据库,以记录严重的洪水泛滥事件,如20167月中国所发生的洪灾。

查看研究结果:宣传页 了解历史极端气候事件的特征

水生态系统分析

近年来,由于水电站的建设,金沙江水生态系统已发生了重大变化。此外,由于气候变化,广泛生长于金沙江的冷水鱼类将会面临很大的生存压力。因此,项目开展了针对鱼类种群和栖息地的研究。

研究结果提供了关于水生生物的多样性、生态系统的健康水平现状和水生态系统的脆弱性的详细信息,结果表明生态系统需要保护和恢复。

为了获取关于浮游植物、浮游动物和底栖动物(尤其是鱼类)的信息,项目组对金沙江水生态系统的现状进行了分析。利用鱼的生物完整性指数(IBI)来评估不同河段的鱼类栖息地质量。

结果表明,该地区现状水生态系统有很高的生物多样性。然而,冷水鱼类对气候变化和水电站的影响十分敏感。因此,在金沙江流域需要实施可持续的适应及保护措施。

在金沙江流域,冷水鱼类对气候变化和水电站的影响十分敏感。

查看研究结果:宣传页 金沙江水生态系统概况

预测径流,预防洪水:预测模型

在过去及未来的数十年内,金沙江流域已建且规划建设多座水电站和水库。作为流域水文情势特征分析内容的一部分,我们建立水文气象预报模型,模型中考虑了大型水库的建设。

考虑径流预报和防洪需求,我们建立了一个水文气象预测模型。该模型已接入了长江水利委员会已有的水文预报系统。其结果可为长江水利委员会指挥防洪提供参考和决策依据,从而提高长江委在径流预测和防洪管理方面的能力。

本模型中的数据来自于近400个雨量站、70多个流量站和12个大型水库的实测数据。模型可以通过从已有气象预报模型和水文局实时传送气象预报数据。水文预报模型可以用于整个金沙江,覆盖了五十多个预测点。

因此,在金沙江流域不同地区进行径流预报是可行的,水库的运行方式也可以得到优化。模型模拟结果也将被用来估计气候变化对该地区水资源和水力发电的影响。

大理附近的洱海气象水文测量站,是预报系统的一部分。

查看研究结果:宣传页 水文气象预测模型

水资源供需平衡:评估和规划工具

丽江市是金沙江流域一个飞速发展的城市。项目以丽江为试点进行水资源供需研究,以应对丽江在水资源管理方面所面临的挑战。基于水量配置模型,分析丽江现状和未来的水资源供需平衡情况,结果表明采取水资源综合管理措施是十分必要的。

水量配置模型再现了丽江的水资源供需状况,从而为丽江未来的水资源规划提供了基本依据。

该模型考虑了六十多座供水工程,如河流、湖泊、水库,以及约270个用水需求点,涉及农业、工业和生活用水。

使用该模型可对未来的社会经济发展和人口变化趋势进行评估,从而为当地水管理部门在未来的水资源管理中实施可持续决策奠定坚实的基础。

该模型亦可用于中国其他地区或城市。

丽江的一系列供水渠道和灌溉系统。我们的工作及研究有助于改善水资源管理系统。

查看研究结果:宣传页 丽江水资源管理

提高冰川融雪监测能力

金沙江流域的冰川和积雪层是水循环的重要组成部分。因此,对其现状和变化情况进行调研十分重要。

地面监测和通过监测积雪覆盖情况的遥感监测,可以增进我们对不同因素的状况和动态的了解,如积雪融化、冰川融化、干旱、洪涝,及其对该地区水资源的影响。

为了提高气候变化监测能力,我们为玉龙雪山设计了自动监测设备,该设备的使用将能显著提高玉龙雪山冰川监测能力。自动冰川监测设备能极大地减少人工测量的工作量,提高监测效率。

此外,我们还建立了融雪径流模型,以分析不同海拔区域的积雪层变化。

这两个监测系统是项目组记录冰川和积雪融化变化情况的重要工具,同时也为公众了解气候变化提供确凿的证据。

我们为玉龙雪山设计并安装了自动监测设备,以提高对气候变化的监测能力。

查看研究结果:宣传页 积雪与冰川监测系统

气候变化对供水与极端水文事件的影响

气候变化对金沙江流域供水、极端水文事件以及水生态系统造成了什么影响?基于气候变化情景的气温和降水进行影响分析,并以先前所阐述的水资源特征作为基准。

气候变化情景

分析金沙江流域未来可能的气候变化情况,对了解气候变化如何影响水资源的可持续利用及极端水文事件(如洪水和干旱)至关重要。

根据多个大气环流模型(GCM)和两种降尺度统计方法,生成近期和远期涵盖气温和降水的24种气候变化情景,包括近期(2021-2050年)的8种情景和远期(2070-2099年)的16种情景。多种气候情景的组合构成了气候变化影响不确定性分析的基础。

经预测,金沙江流域南部的气温近期会上升1-2℃,远期会上升1.5-5℃(与1981-2010基准期相比)。虽然升温趋势明显,但是降水趋势存在较大不确定性。总体来看,金沙江流域的上游和中游降水会增加,但该地区下游的变化尚不明确。这一结论与历史变化趋势一致,验证气候变化情景预测的合理性。

查看研究结果:宣传页 气候变化情景

对不同行业及利益相关者的影响

我们分析了气候变化对整个金沙江流域不同行业如水电(例如发电)、农业(例如作物生长适宜性)和水生态系统(例如鱼类栖息地质量)的影响。该影响评估还包括极端气候事件(例如洪水频率、强度、山洪、农业和水文干旱等)。此外,我们通过考虑未来的社会经济趋势分析水量平衡、确定缺水量,从而研究气候变化对丽江地区工业、生活/旅游业和农业的影响。

目前已识别气候变化所带来的机遇与挑战,为提出适应策略和措施奠定基础。

丽江在过去的二三十年内面临着日益严峻的水危机。河道和水潭,如黑龙潭,已经开始干涸。

气候变化丽江市供需水影响

基于水资源配置模型分析气候变化对丽江市供需水的影响。结果表明,丽江市农业灌溉需水量在近期平均增加3%左右,在远期平均增加7%左右。由于城镇化进程以及旅游业的发展,生活需水预计增长一倍。评估结果表明,丽江缺水问题严重,未来供需矛盾将更加突出,这种矛盾在枯季表现尤为明显。

气候变化对极端事件的影响

我们分析了24种气候情景下金沙江流域不同类型极端事件(如洪水和干旱)的频率和强度。

结果表明,特定频率的干流洪水强度将显着增加。 由于情景模拟中出现超过历史最大洪峰的情况,建议进一步检验洪水设计防洪库容和防洪管理流程。

住宅区、农业、工业、关键基础设施、能源生产、航运和生态系统等领域受气候变化影响严重。 影响带来的主要是经济损失,也包括人员伤亡。

由于暴雨天数的增加,金沙江支流地区的山洪发生频率预计会增加,从而造成损失加剧。

高温引起的枯期蒸发量增加导致降水模式也会相应改变,从而导致水文干旱事件的频率将会增加。对于农业干旱,由于蒸散量增加,作物需水量可能会大幅增加,如果不能保证灌溉用水,农业干旱事件的频率、强度和持续时间会增加。

对水生态系统的影响

水温升高导致产卵期缩短是影响冷水鱼栖息地的主要因素,不同物种之间的相互作用会导致鱼类群落结构的变化,并最终影响许多生态响应过程,如物种分布的改变,生物多样性的减少,外来物种的入侵和食物网结构等。

此外,水电站的联合效应,如蓄水,改变水文状况,阻塞效应等,都会加速生态系统的退化。 纵向连通性的恢复是系统重建工作的重中之重,从而可保证鱼类的基本产卵栖息地。

对水力发电的影响

年平均径流量和雨季径流量将显着增加,但是由于电站装机容量有限,发电量不能呈比例增加。

对农业生产的影响

随着金沙江流域降水和温度的增加,主要作物适宜种植面积可能会增加,并向北向高纬度转移。此外,农作物的需水量预计会增加。

未来的适应性策略和措施

根据气候变化和社会经济发展对金沙江水资源供给和极端气候事件影响的分析,我们将在典型案例中制定并评估适应策略,以及水资源管理、防洪抗旱措施。

此外,我们概述了适应气候变化长期战略的原则。

典型案例:供需水

本项目建立丽江市水资源评估和规划模型,模拟分析丽江现状和未来的供需水情况。 分析结果表明,丽江市缺水问题严重,未来特别是枯期的水资源短缺问题会更加严峻。

为缓解丽江市水资源短缺问题,项目评估了52项措施的适应性。分析结果表明,大部分规划措施都是供水方面的工程措施。 需水方面的非工程措施和工程优化管理评估效果较好。 项目还推荐了一系列其他适应性措施,如水库管理,节水和中水回用,优化作物品种和栽培技术。

水资源评估与规划模型可为丽江市水务局全面应对气候变化和社会经济发展提供了坚实基础。 该项目的研究成果已用于 “丽江市生态水网建设规划”以及“丽江市水利发展十三五规划”。

典型案例:极端事件

在极端事件的案例研究中,我们阐述了应对金沙江干流洪水的示范性措施以及金沙下游地区的农业和水文干旱事件。

为保护宜宾市不受远期干流洪水的影响,需要利用向家坝和溪洛渡水库80%的调蓄库容。 由于这两个水库的调蓄库容规划用于保护其他城市,因此需要采取其他的适应性水库管理措施。

在抗旱方面,由于金沙江中下游规划建设的梯级水库,三个供水工程(攀枝花城市供水项目,滇中引水工程,向家坝灌区工程)受到的水文干旱的影响会大大缓解。

总体而言,现有缓解洪旱风险措施(与丽江案例类似)多是防洪和抗旱工程措施,非工程措施较少受到的关注。 但是,对监测系统、灾害风险绘图等非工程措施评估结果表明其适应性较好,因此建议详细拟定非工程措施,从而结合规划措施实施。

适应气候变化长期战略

基于案例研究,项目概述了金沙江流域适应气候变化长期战略的原则。 这一战略的重要内容是适应活动的总体目标、政策和体制框架、能力建设和宣传以及具体的适应措施。 如何将现有战略和政策融入其中是制定长期适应战略的一个重要部分。